
www.manaraa.com

Formal Software Development in MAYA

Serge Autexier and Dieter Hutter?

German Research Center for Artificial Intelligence, Stuhlsatzenhausweg 3,
D-66123 Saarbruecken, Germany, Email: {autexier | hutter}@dfki.de

Abstract. The formal development of industrial-size software is an error-
prone and therefore an evolutionary process. Verifying formal specifica-
tions usually reveals hidden errors causing the change of parts of the
specification. Also adding new functionality will result in changes of
the specification which always endangers the verification work already
done. In this paper we describe the system Maya which maintains for-
mal developments. The Maya-system supports an evolutionary formal
development since it allows users to specify and verify developments in a
structured manner, incorporates a uniform mechanism for verification in-
the-large to exploit the structure of the specification, and maintains the
verification work already done when changing the specification. Maya

relies on development graphs as a uniform representation of structured
specifications, which enables the use of various (structured) specification
languages to formalize the software development. Moreover, Maya al-
lows the integration of different theorem provers to deal with the actual
proof obligations arising from the specification, i.e. to perform verifica-
tion in-the-small.

1 Introduction

Formal methods are used in the software development process to increase the
security and safety of software. The software systems as well as their requirement
specifications are formalized in a textual manner in some specification language
like Casl [4] or Vse-Sl [7]. The specification languages provide constructs to
structure the textual specifications to ease the reuse of components. Exploiting
this structure, e.g. by identifying shared components in the system specification
and the requirement specification, can result in a drastic reduction of the proof
obligations, and hence of the development time which again reduces the overall
project costs.

Creating the arising proof obligations in a naive way by postulating all parts
of the security requirements as theorems of the system design would result in
umpteen redundant proof obligations relating to common datastructures. Ex-
ploiting the given (graph-) structure of specifications allows one to reveal this
redundancy. In [2] we proposed the use of development graphs to represent de-
fined and postulated properties of formal specifications in a logical way. We
will introduce a calculus DG to verify postulated properties. The calculus rules
decompose conjectures between specifications into conjectures between parts of

? This work was supported by the German Ministry for Education and Technology
(BMBF).

www.manaraa.com

2 Serge Autexier and Dieter Hutter

the specification and check whether some of those are already subsumed by the
specification structure. We denote this activity by verification in-the-large. Those
conjectures that can neither be further decomposed nor subsumed give rise to
the proof obligations that must actually be tackled by some theorem prover,
which is denoted by verification in-the-small.

However, the logical formalization of software systems is error-prone. Since
even the verification of small-sized industrial developments requires several per-
son months, specification errors revealed in late verification phases pose an in-
calculable risk for the overall project costs. An evolutionary formal development
approach is absolutely indispensable. In all applications so far development steps
turned out to be flawed and errors had to be corrected. The search for formally
correct software and the corresponding proofs is more like a formal reflection of
partial developments rather than just a way to assure and prove more or less
evident facts. Revealed flaws give rise to changes of the specification and to the
need for an update of all the proof work done before. Loosing this work would be
an incalculable risk of the overall project costs for large verification tasks that
arise in practice. Hence, we introduce a management of change based on the no-
tion of development graphs to incrementally adjust existing proofs to a changed
specification, while preserving as much information about proven conjectures as
possible.

We start with a general overview of how Maya supports the formal devel-
opment of software in Sect. 2. In Sect. 3 we introduce the formal notion of
development graphs that underly the Maya system. Sect. 4 describes the gen-
eral methodology to define translation of an input specification given in some
specification language L into development graph. The methodology is illustrated
by providing the definition of the translation of Casl-specifications into devel-
opment graphs. Sect. 5 is concerned with the computation of differences between
specifications and how to update their logical representation inside the develop-
ment graph. Sect .6 presents the management of change for both, verification
in-the-large and verification in-the-small, while we discuss its implementation in
Maya and related work in Sects. 7 and 8.

2 General Overview

A user interacts with the Maya-system via a formal specification language. Such
a formal specification gives rise to a logical modeling of the specification and the
proof obligations arising from commitments made inside the specification. Ex-
amples of such commitments are that theories satisfy specific properties specified
inside so-called security models or that basic specifications imply specific prop-
erties, so-called theorems. Translating the textual specification into a structured
logic representation, which we call a development graph, proof obligations are
denoted either as so-called theorem links between theories, indication that both
theories are related to each other wrt. a specific property or as so-called theorems
representing lemmata inside a particular theory. The problem of establishing
properties between theories is dealt with inside the Maya-system utilizing the

www.manaraa.com

Formal Software Development in MAYA 3

overall structure of the graph until we end up with elementary proof obligations
which are tackled by external theorem provers.

The user performs changes of her specification always on the textual repre-
sentation, which gives rise to the problem of tracking the changes in the textual
specification to arising changes in the corresponding logical representation and
last not least also in changes or adaptation of the proofs. Changed textual spec-
ifications are translated into their logical counterpart. The analysis which parts
of the specification have changed is done on the logical level. The result of the
analysis is an operational description of how to adjust the existing development
graph such that it fits the changed specification. The adjustment of the proof
work is based on the operation description incorporating precompiled knowledge
how individual operations will affect the validity of proofs.

3 Development Graphs

In order to define development graphs we start with a short recapitulation of
the basics of logics as they are given, for instance, in [11]. Thereby the notion of
a logic is based on the notions of an institution and an entailment system.

An institution I = (Sign,Sen,Mod, |=) consists of a category of signatures
Sign, two functors Sen and Mod giving respectively the set of valid sentences
Sen(Σ) and the models Mod(Σ) for some signature, and a satisfaction relation
|=Σ⊆ Mod(Σ) × Sen(Σ) for each signature Σ. An entailment system E =
(Sign,Sen,`) consists of a category Sign of signatures, a functor Sen:Sign−→
Set giving the set of sentences over a given signature, and entailment relations
`Σ⊆ |Sen(Σ)| × Sen(Σ) with the following properties:

1. reflexivity: for any ϕ ∈ Sen(Σ), {ϕ} `Σ ϕ,
2. monotonicity: if Γ `Σ ϕ and Γ ′ ⊇ Γ then Γ ′ `Σ ϕ,
3. transitivity: if Γ `Σ ϕi, for i ∈ I , and Γ ∪ {ϕi | i ∈ I} `Σ ψ, then Γ `Σ ψ,
4. `-translation: if Γ `Σ ϕ, then for any σ:Σ−→Σ ′ in Sign, σ[Γ] `Σ′ σ(ϕ).

A logic is then defined as a 5-tuple LOG = (Sign,Sen,Mod,`, |=) such
that: (1) (Sign,Sen,Mod, |=) is an institution (denoted by inst(LOG)), (2)
(Sign,Sen,`) is an entailment system (denoted by ent(LOG)), and (3) the
following soundness condition is satisfied: for any Σ ∈ |Sign|, Γ ⊆ Sen(Σ) and
ϕ ∈ Sen(Σ), Γ `Σ ϕ implies Γ |=Σ ϕ. Throughout the rest of the paper, we
will work with an arbitrary but fixed logic LOG = (Sign,Sen,Mod,`, |=).

Structured specifications are represented on a logical basis as development
graphs. The nodes of such a graph represent individual theories. Definition links
are used to specify theory inclusions (with respect to some morphism) between
different theories. The axiomatic specification of a single theory is distributed
to the subgraph of the corresponding node since the definition of the theory of
a node depends on the local axioms attached to the node combined with the
axioms or theories of the nodes imported by definition links.

In order to formulate proof obligations denoting properties between different
theories (verification in-the-large) we introduce so-called theorem links. These

www.manaraa.com

4 Serge Autexier and Dieter Hutter

links are similar in appearance to definition links but do not influence the theories
denoted by the nodes. Formally we define

Definition 1. A development graph S is a directed graph 〈N , Ψ〉, where

– N is a finite set of nodes. Each node N ∈ N is a pair (ΣN
l , Φ

N
l) consisting

of a local signature ΣN
l and a set of local axioms ΦNl ⊂ Sen(ΣN) of N .

– Ψ = ΨD]ΨT is a finite set of directed links between elements of N consisting
of an acyclic1 set ΨD of definition links and a set ΨT of theorem links.
Each link from a node M to a node N in Ψ is either global (denoted M σ N)
or local (denoted M σ N) and is annotated with a signature morphism
σ : ΣM → ΣN .

For all N ∈ N the signature ΣN of N is given by:
ΣN = ΣN

l ∪ {σ(f)|f ∈ ΣM ,M σ N ∈ ΨD} ∪ {σ(f)|f ∈ ΣM
l ,M

σ N ∈ ΨD}

For the implementation, we represent a signature morphism σ by a set of
finite pairs (fin, fout) with σ(f) = g if there is a pair (f, g) ∈ σ and σ(f) = f

otherwise.
The proof theoretical semantics of a development graph is given by the fol-

lowing definition:

Definition 2. Let S = 〈N , Ψ〉 be a development graph and ∆ ⊆ Ψ , ∆ acyclic.
Let N ∈ N , then the theory Th∆(N) of N relative to ∆ is defined by

Th∆(N) =

[

ΦNl ∪
⋃

K
σ
N∈∆

σ(Th∆(K)) ∪
⋃

K
σ
N∈∆

σ(ΦKl)

]`
ΣN

where [Γ]
`
ΣN denotes the closure of Γ under the entailment relation `ΣN . The

theory Th(N) of N is defined as ThΨD (N).

<nat> , <0, succ>

NAT

NATLISTLISTSTACK NATSTACK

<list> , <nil, cons> <Nlist> , <Nnil, Ncons><stack> , <empty, ...> <Nstack> , <Nempty, ...>

idid id id

<elem> , <>

ELEM

list −> Nlist,...

stack −> Nstack,...

elem −> nat

stack −> list,... Nstack −> Nlist,...

Fig. 1. Structured Specifications of NatList

Fig. 1 presents a development graph for lists List and stacks Stack over arbi-
trary elements and their respective instantiations to lists NatList and stacks

1 A set of links is acyclic iff the graph denoted by these links is acyclic.

www.manaraa.com

Formal Software Development in MAYA 5

NatStack over natural numbers. While we included the local signatures of the
nodes in the figure we have omitted the local axioms because of shortage of
space. The theories of generic lists List and generic stacks Stack are defined
with the help of a theory Elem, indicated by the global definition links from
Elem to List and Stack, and local axioms in List and Stack specifying that
List and Stack are freely generated. The global theorem link between Stack

and List represents the proof obligation, that Stack can be implemented by
List.

The theories of lists and stacks of natural numbers, NatList and NatStack,
are instantiations of generic lists and stacks with natural numbers Nat. Thus,
both NatList and NatStack import Nat via a global definition link and the
local axioms of List and Stack respectively via local definition links. The global
theorem links between List and NatList, and Stack and NatStack denote
the proof obligations that NatList and NatStack are respective instances of

da
Vi

nc
iV

2.
1

inst−45

union−44

TransitiveRelation

inst−23

union−22

Relation

union−16

inst−17

ReflexiveRelation

union−46

inst−47

union−48

PreOrder

union−50

inst−51

PartialOrder

union−73

inst−74

union−75

inst−77

union−76

inst−81

basic−80

SigOrder

basic−42

union−41

basic−40

basic−101

inst−102

inst−99

union−98

BooleanAlgebra

union−95

inst−96

union−97

inst−121

union−120

ExtBooleanAlgebra

basic−103

basic−100

inst−111

union−110

inst−112

inst−107

union−106

inst−109

union−108

RichBooleanAlgebra

ExtPartialOrder

basic−78

inst−91

union−90

inst−92

inst−87

union−86

TotalOrder

inst−54

union−53

union−83

inst−84

union−85

inst−118

union−117

ExtTotalOrder

basic−88

RichTotalOrder

union−66

inst−67

inst−69

union−68

Rat

basic−12

inst−11

union−10

Int

basic−7

inst−6

union−5

Nat

basic−2

union−58

inst−59

inst−57

union−56

union−63

inst−64

inst−62

union−61

inst−115

union−114

RichPartialOrder

union−37

inst−38

EquivalenceRelation

inst−36

union−35

PartialEquivalenceRelation

inst−33

union−32

SymmetricRelation

inst−20

union−19

union−25

inst−26

SimilarityRelation

inst−28

union−27

inst−31

union−30

Fig. 2. Example of development graphs for
real software engineering problems

List and Nat. The global theo-
rem link between Elem and Nat

denotes the proof obligation that
the actual parameter Nat satis-
fies the requirements of the for-
mal parameter Elem. The proof
obligation that NatStack can be
implemented by NatList is rep-
resented by a global theorem link
from NatStack to NatList.

This toy example illustrates
how the important concepts from
structured specifications are rep-
resented with development graphs.
In practice the system and re-
quirement specifications and hence the resulting development graph are much
larger. A development graph of a typical size is sketched in Fig. 2.

4 Translating Specifications into Development Graphs

In formal software development, specification languages like Casl [4] or VSE-
SL [7] are used to describe a system and its requirements as well as proof
obligations arising from the requirement that the system must satisfy these re-
quirements. The notion of development graph from Sect. 3 provides a uniform
representation of general structured formal developments. The representation is
independent of any specification language, which eases the use of different speci-
fication languages as input format. To use a specification language L as input for
Maya we must define a mapping from L-specifications into the representation
language of development graphs. Roughly speaking, such a translation of some
L-specification S works as follows:

www.manaraa.com

6 Serge Autexier and Dieter Hutter

– it maps basic (unstructured) parts of the specification, like the specification
of simple abstract datatypes, into a collection of (local) axioms within some
theory node,

– it translates the structuring operations of the specification language L into
the notion of definition links, and

– it reformulates proof obligations given in the specification either into theorem
links connecting corresponding theories or into conjectures considered as
lemmata of a specific theory in the development graph.

Obviously, the definition of such a translation entails the requirement to prove
the adequacy of the translation of L-specifications into the notion of development
graphs.

In the following we illustrate the translation of specifications into develop-
ment graphs by giving the rigorous definition of the mapping of Casl-specifica-
tions into development graphs.

4.1 Translation of CASL into Development Graphs

For the translation of CASL into development graphs we restrict ourselves to
a subset of the Casl-language, namely Casl-specifications without the struc-
turing operations hiding and freeness (cf. [4]) and without architectural speci-
fications. We use the CATS-parser [12] to parse the specifications, which also
provides encoding of the logical parts of specifications from the Casl-logic into
different target logics. Since the logic underlying the actual implementation of
development graphs in Maya is many-sorted higher-order logic, we use second-
order logic without subsorting as the target logic. Furthermore, the CATS-parser
performs a static analysis of the specifications.

Basic specifications constitute the nucleus of Casl-specifications. Consisting
of a (local) signature and a set of axioms, basic specifications are translated
into the higher-order logic with the help of the CATS-parser which provides
second-order logic encodings. Structured specifications are used to combine basic

specifications with the help of structuring operations, like for example extension
(then), union (and), or to actualize parameterized specifications.

A Casl-specification itself consists of a list of specification parts which are
either named specifications, named views, or fitting views, which are constructed
with the help of structured specifications. We will describe these constructs in
more details lateron.

To translate a Casl-specification, we define a top-level translation function
τCASL that iterates over the specification parts and that iteratively constructs
the corresponding development graph. The major difficulty of this translation
is the encoding of the so-called linear visibility constraint, which is implicitly
given by the Casl-semantics: the semantics of a specification part depends on its
global environment which depends on previously parsed specification parts. Thus
besides a list of Casl-specifications, τCASL requires the global environment as
an additional argument that provides information about translated specifications
and views before parsing the actual list of Casl-specifications.

www.manaraa.com

Formal Software Development in MAYA 7

τCASL returns the actualized development graph enlarged by nodes and links
corresponding to the parsed specification list and provides the new global en-
vironment. Inside this translation information we accumulate for instance the
information how named specifications or named views have been translated.
Lateron we make use of this information to perform actualizations. Formally, we
define τCASL by recursion as follows:

τCASL(〈〉,S,P) := (S,P)
τCASL(〈spec-part, restlist〉,S,P) := τCASL(restlist,S ′,P ′)

with (S ′,P ′) := τpart (spec-part,S,P)

τpart is the corresponding translation function for the individual specification
parts. It takes as arguments a structured specification spec-part, a development
graph S, and a translation information P . It provides a pair (S ′,P ′) where S ′ is
a new development graph that includes the subgraph resulting of the translation
of the structured specifications and P ′ is the updated translation information.

Since Casl specification parts are constructed with the help of structured
specifications, we will introduce a third translation function τ to translate struc-
tured specifications into development graphs. τ takes as argument the specifica-
tion Spec, the development graph S and translation information P . It returns a
triple (I ′,S ′, O′) with S ′ being the development graph updated with the trans-
lated Spec. The linear visibility constraints for structured Casl-specifications
defines how specification parts are visible when parsing the next specification.
Translating this requirement in terms of development graphs, the development
graphs of previous specifications have to be imported to the graph of the spec-
ification part under consideration. Therefore τ returns also a set I ′ of nodes
denoting the import interface to the global environment and a node O′ which
corresponds to the exported global environment.

4.2 Named Specifications.

A named specification in Casl is of the form

spec SN [SP1] . . . [SPn] given SP ′
1, . . . , SP

′
m = SP end

where SN is the name of the specification, SP1, . . . , SPn are the parameter
specifications, SP ′

1, . . . , SP
′
m specifications that are visible inside the parameter

specifications, and SP is the body of the named specification. For the definition
of the translation, we use the translation function τ for specification bodies.
This function takes three arguments: (1) the Casl-specification body to trans-
late, (2) the actual development graph, (3) the actual translation information.
This function returns a triple 〈I,S, O〉, containing the new development graph
S, the theory nodes I which import the visible environment of the argument
specification body, and the theory node O which exports the new visible envi-
ronment.

In order to satisfy the visibility rules from Casl the translation is done
according to the following steps

www.manaraa.com

8 Serge Autexier and Dieter Hutter

1. The union of the “given” specifications SP ′
1, . . . , SP

′
m is translated:

〈I0,S0, O0〉 := τ(SP ′
1 and . . . and SP ′

m,S,P)

2. Parameter specifications SPi are translated for all i, 1 ≤ i ≤ n by:

〈Ii,Si, Oi〉 := τ(SPi,Si−1,P)

and new definition links are inserted to import the output theory node O0

into all elements of all Ii with 1 ≤ i ≤ n: Let Sn be 〈N , ΨD] ΨT 〉 then

Sn+1 := 〈N , (ΨD ∪ {O0
λ N | N ∈ Ii ∧ 1 ≤ i ≤ n})] ΨT 〉

3. Next, the body SP of the named specification is translated by:

〈In+2,Sn+2, On+2〉 := τ(SP,Sn+1,P)

and new definition links are added to import the parameters O1, . . . , On
into each element N of In+2 obtain by translating the body. Let Sn+2 be
〈N ′, Ψ ′

D] Ψ ′
T 〉 then

〈Iname,Sname, Oname〉 :=

〈I0, 〈N
′, (Ψ ′

D ∪ {Oi
λ N | N ∈ In+2 ∧ 1 ≤ i ≤ n})] Ψ ′

T 〉, On+2〉

As translation information we store that the Casl-specification of name SN has
the top-level output node Oname, and add the information about the translation
of the parameter specifications (〈Ii, Oi〉) with 1 ≤ i ≤ n as well the output node
O0 of the given part. This is used for the translation of instantiations of SN .

The final result of the translation of the named specification definition is then

τpart(spec SN [SP1] . . . [SPn] given SP ′
1, . . . , SP

′
m = SP end,S,P)

:= 〈Sname,P ∪ [SN,Oname, (〈I1, O1〉, . . . , 〈In, On〉), O0]〉

4.3 Views.

A named view in Casl is of the general form

view V N [SP1] . . . [SPn] given SP1, . . . , SPm : SP to SP ′ = SM end. (1)

[SP1] . . . [SPn] given SP1, . . . , SPm : SP represents a specification similar to
the definition of named specifications. The view constitutes the proof obligation
that the models of this specification can be mapped to models of SP ′ using the
signature morphism given by SM .

To translate a named view we translate a dummy named specification

spec SN [SP1] . . . [SPn] given SP1, . . . , SPm = SP

which results as described in the previous paragraph in

〈Sname,P ∪ [SN,Oname, (〈I1, O1〉, . . . , 〈In, On〉), O0]〉.

www.manaraa.com

Formal Software Development in MAYA 9

Next we translate the structured specification SP ′ by

〈I ′,S ′, O′〉 := τ(SP ′,Sname,P)

and add a global theorem link from Oname to O′ with the morphism SM . The
final result of τpart on (1) consists of this new development graph and the pa-
rameter information for the named view. Let S ′ = 〈N ′, Ψ ′

D] Ψ ′
T 〉 then

τpart (view V N . . . end,S,P) :=

〈 〈N ′, Ψ ′
D] (Ψ ′

T ∪ {Oname
SMO′})〉,

P ∪ {[V N, (Oname, O′), (〈I1, O1〉, . . . , 〈〈In, On〉), O0]}〉

4.4 Structured specifications.

We now define τ for basic specifications and each of the structuring operations
in Casl.

Basic Specifications. A basic specification is a pair (Σ,Φ) of a signatureΣ and
a set of second-order logic axioms Φ. We create a new node in the development
N with local signature ΣN

l := Σ and local axioms ΦNl := Φ and add it to
the development graph. The node N is both the node where the actual visible
environment shall be imported into as well as the node that contains the visible
environment “after” parsing the basic specification.

τ((Σ,Φ), 〈N , ΨD] ΨT 〉,P) := 〈{N}, 〈N ∪ {N}, ΨD] ΨT 〉, N〉

Translations. A translation is of the form SP with SM , where SP is a struc-
tured specification and SM a symbol morphism. Let

〈I ′,S ′, O′〉 := τ(SP,S,P)

with S ′ = 〈N ′, Ψ ′
D] Ψ ′

T 〉 and let N be a new node in N ′ with empty local
signature and axioms. We add this new node to the new development graph and
import the top-level node O′ from SP into N via a global definition link with
morphism SM .

τ(SP with SM,S,P) := 〈I ′, 〈N ′ ∪ {N}, (Ψ ′
D ∪ {O′SMN})] Ψ ′

T 〉, N〉

Extensions. There are two kinds of extensions in Casl, namely SP then SP ′

and SP then %implies SP ′. The first is a regular extension of SP by SP ′,
while the second denotes a conservative extension, i.e. it is in fact a conjecture
that all axioms in SP ′ are theorems in the theory of SP .

– Regular Extensions are translated as follows. Let

〈I ′,S ′, O′〉 := τ(SP,S,P)
〈I ′′, 〈N ′′, Ψ ′′

D] Ψ ′′
T 〉, O

′′〉 := τ(SP ′,S ′,P)

www.manaraa.com

10 Serge Autexier and Dieter Hutter

then

τ(SP then SP ′,S,P) := 〈I ′, 〈N ′′, (Ψ ′′
D ∪ {O′ λ I ′′ | I ′′ ∈ I ′′})] Ψ ′′

T 〉, O
′′〉

– Conservative Extensions: The Casl-semantics requires from a conservative
extension SP then %implies SP ′ that SP ′ is a basic specification without
local signature. Thus, let

〈I, 〈N ′, Ψ ′
D] Ψ ′

T 〉, O〉 := τ(SP, 〈N , ΨD] ΨT 〉,P) and
〈{N}, 〈N ′ ∪ {N}, Ψ ′

D] Ψ ′
T 〉, N〉 := τ(SP ′, 〈N ′, Ψ ′

D] Ψ ′
T 〉,P)

Then the translation of this conservative extension consists of adding the
local axioms of N as local lemmata to O and returning 〈N ′, Ψ ′

D] Ψ ′
T 〉.

τ(SP then %implies SP ′, 〈N , ΨD] ΨT 〉,P) := 〈I, 〈N ′, Ψ ′
D] Ψ ′

T 〉, O〉

where O is the updated O.

Union. A union of specifications in Casl is of the form SP and SP ′. Let

〈I, 〈N ′, Ψ ′
D] Ψ ′

T 〉, O〉 := τ(SP, 〈N , ΨD] ΨT 〉,P) and
〈I ′, 〈N ′′, Ψ ′′

D] Ψ ′′
T 〉, O

′〉 := τ(SP ′, 〈N ′, Ψ ′
D] Ψ ′

T 〉,P)

In order to represent the union of the specifications, we add a new empty theory
node N to N ′′ and import both O and O′ into N via global definition links.

τ(SP and SP ′, 〈N , ΨD] ΨT 〉,P) :=
〈I ∪ I ′, 〈N ′′ ∪ {N}, (Ψ ′′

D ∪ {O λ N,O′ λ N})] Ψ ′′
T 〉, N〉

The theory nodes to import the global environment is the union of both I and
I ′, while the visible environment “after” the union is the global signature of the
new node N .

Closed specifications. They are of the form closed{SP}. The semantics is
that the global environment is not visible inside SP , but shall still be visible
“after” closed{SP} together with the environment generated from SP . Thus,
the translation of the closed specification consists in creating a new empty node
N , import the environment from SP into N via a global definition link, and
returning N has both the import and output node for the global environment.
Thus, if 〈I, 〈N ′, Ψ ′

D] Ψ ′
T 〉, O〉 := τ(SP, 〈N , ΨD] ΨT 〉,P), then

τ(closed{SP}, 〈N , ΨD] ΨT 〉,P) := 〈N, 〈N ′ ∪ {N}, (Ψ ′
D ∪ {O λ N})] Ψ ′

T 〉, N〉

Actualization. An actualization in Casl is of the general form

SN [SP1 fit SM1] . . . [SPn fit SMn].

www.manaraa.com

Formal Software Development in MAYA 11

Its semantics is that, the formal parameter of the formerly declared named spec-
ification SN are instantiated with the SPi and the “given”-specifications of
SN is imported into the actual parameters SPi. This is only sound if the ac-
tual parameter fit the formal parameter theories modulo the morphisms SMi.
A parameter information for SN is [SN,O, (〈I ′

1, O
′
1〉, . . . , 〈I

′
n, O

′
n〉), OI], where

O is the top-level theory for SN , 〈I ′
i , O

′
i〉 the information about input and out-

put theories of the parameter theories, and OI the top-level theory node that is
imported into the parameters. Given this parameter information for the named
specification SN, let

〈N0, Ψ
0
D] Ψ0

T 〉 := 〈N , ΨD] ΨT 〉

τ(SPi, 〈Ni−1, Ψ
i−1
D] Ψ i−1

T 〉,P) := 〈Ii, 〈Ni, Ψ
i
D] Ψ iT 〉, Oi〉

for all 1 ≤ i ≤ n

Then we import the “given” environment theory OI into each theory in Ii, for
all 1 ≤ i ≤ n:

〈Nn, (Ψ
n
D ∪ {OI

λ I | I ∈
n
⋃

i=1

Ii})] Ψ
n
T 〉

We further encode the soundness condition required by fit by introducing global
theorem links from each O′

i to Oi with morphism SMi:

〈Nn, (Ψ
n
D ∪ {OI

λ I | I ∈
n
⋃

i=1

Ii})] (ΨnT ∪ {O′
i
SMiOi | 1 ≤ i ≤ n})〉

Finally, we create the node NI to encode the instantiated theory: This node
imports globally the top-level node N for SN , as well as the top-level nodes Oi
of the actual parameter theories.

〈Nn∪{NI}, (ΨnD ∪ {OI
λ I | I ∈

⋃n
i=1 Ii} ∪ {NSMNI , O1

λ NI , . . . , On
λ NI})

](ΨnT ∪ {O′
i
SMiOi | 1 ≤ i ≤ n})

〉

where SM :=
⋃n
i=1 SMi.

This completes the definition of the translation of structured specification.

4.5 Fitting Views

A fitting view is of the form V N [SP1] . . . [SPn], where V N is the name of a
view. The translation of this fitting view is analogously to the translation of an
actualization of a named specification, except that an additional global theorem
link from the actualized theory to the top-level theory node obtained for the
target SP of the view SN is inserted.

www.manaraa.com

12 Serge Autexier and Dieter Hutter

5 Difference Analysis & Basic Operations

Due to its evolutionary nature, (formal) software development can be seen as a
chain of specifications Spec1, Spec2, . . . which corresponds to a chain of devel-
opment graphs DG1, DG2, . . . such that DGi is the logical representation of the
specification Speci. Working on the verification side we try to verify the various
proof obligations within a particular development graph, say DGi. Changing the
specification to Speci+1 and compiling it into its logical representation DGi+1,
we loose all information about previous proof work, which is stored in DGi, at
first. Hence, the idea is to incrementally adjust DGi and its annotated proofs
until the resulting development graph DGi+1 denotes a logical representation of
Speci+1. Two problems have to be solved to implement this approach:

First, we need a set of operations which allow us to modify development
graphs in such a way that as much proof work as possible can be reused from
the previous development graph. We call these operations, that manipulate in-
dividual links, theories or axioms, basic operations.

Second, we have to compute the differences between two specifications Speci
and Speci+1 and translate these differences into a sequence of basic operations
to be performed on the development graph DGi in order to obtain DGi+1.

5.1 Basic Operations

To allow for a reuse of proof work, basic operations have to be as granular as
possible. Since development graphs consists of nodes and links, basic operations
allow one to modify single nodes or links. In principle each of these individual
objects can be inserted, deleted or modified. As nodes are composed of a local
signature and local axioms, the modification of nodes is done by insertion, dele-
tion or modification of signature entries or local axioms. Formally the set of basic
operations consists of the following functions that take, between others, a devel-
opment graph S = 〈N , ΨD] ΨT 〉 as argument and return a new development
graph S ′:

Nodes: insnode(N,S) inserts a new (isolated) node N to N , and delnode(N,S)
removes a node N from N and deletes also all links in ΨD and ΨT connected
to N .

Links: ins(N,M, σ, Type,S) inserts a link to Ψ as a global/local definition/the-
orem link depending on the value of Type. del(L,S) removes the link L from
ΨD] ΨT , and ch(L, σ,S) replaces the morphism of the link L by σ.2

Local Signature: inssig(f,N,S) inserts the symbol f into the local signature
of N , where f can be either a sort, a constant, or a function. delsig(f,N,S)
removes the symbol f from the local signature of N .

Local Axioms: insax(N,Ax,S) inserts the local axiom Ax into the node N ,
delax(f,N,S) deletes the local axiomAx from the nodeN . chax(N,Ax,Ax

′,S)
replaces the local axiom Ax by the new local axiom Ax′ in the node N .

2 There are no operations to change the source or target node of a link. In this case
the old link must be deleted and a new link is inserted.

www.manaraa.com

Formal Software Development in MAYA 13

For each basic operation the manner how it affects the development graph
is known. This knowledge is exploited by the proof transformation techniques,
that adapt the proofs of old global proof obligations to the new global proof
obligations. We will describe these techniques in the Sect. 6.

Starting with a legal development graph, the application of basic operations
may result in inconsistent intermediate states. A typical example is the insertion
of a new function symbol into the source node of a link. Then in general, the
morphism attached to the link has to be adjusted to cope with the new symbol.
Therefore we allow for intermediate inconsistent states of the development graph
and delay the update of the proof work until we reach a consistent state which
is indicated by calling a special update-function initiating a consistency check
and a propagation of the proof work done so far.

5.2 Computing Differences

When computing differences between specifications, the question arises how to
define the granularity up to which differences are determined between the old
and the new development graph. Note that along a scale of granularity levels
for difference analysis the worst granularity level is the one only stating that the
whole global proof obligation changed, in which case the proof transformation
consists of redoing the whole proof, whereby any information about established
conjectures are lost.

The overall aim is to enable the preservation of as many validated conjectures
during the transformation of the old proof to the new development graph. The
recorded information establishing the validity of a conjecture consists of proofs
for those conjectures. However, not every theorem prover returns a proof object.
In that case, we must assume that any axiom available at prove time might have
been used during the proof. Thus, the information about a proof contains at
least a set of axioms. If any of those is deleted or changed, the proof gets invalid.
The implication is that we have to determine the difference between the old and
new development graph at least on the level of axioms.

The axioms are build from the available signature symbols, like sorts, con-
stants and functions. In order to maintain a sound development graph, we must
also be able to determine the differences between signatures. As presented in
Sect. 3, the signature of some node is defined from the local signature defined
on that node and the signatures of the nodes imported via definition links, after
application of the morphism attached to those links.

To determine the differences of signatures and axioms between two develop-
ment graphs requires first to define an equivalence relation between graphs that
identifies nodes and links. This problem has no optimal solution and hence we
rely on some heuristics checking their equivalence. In principle two nodes are
equivalent if their local signature and axioms are equal as well as their respec-
tive incoming definition links. However, this equivalence relation is to strict for
our purpose, since if we added or deleted an axiom to some node, its old and
new version are not identified. Thus, instead of performing an equality check, we
perform a similarity check on nodes, that is based on the number of shared local

www.manaraa.com

14 Serge Autexier and Dieter Hutter

signature symbols as well as the similarity of the incoming definition links. Ap-
plying that similarity check results in an equivalence relation associating nodes
and links of the old to nodes and links in the new development graph.

The equivalence relation is the basis to determine the differences between
both graphs. From it we determine (1) which nodes have been deleted or added,
(2) which local signature symbols and axioms have been deleted or added to
some node, and (3) how the morphisms of links have changed.

5.3 Heuristic Determination of Similarities

In this Section we describe the heuristic implemented in Maya which is used
to compute the similarities between two versions of development graphs. The
conducted experiments showed that it is sufficiently reliable for our needs. The
similarity is expressed by a mapping among theory nodes and links. Formally,
given two development graphs 〈N , ΨD] ΨT 〉 and 〈N ′, Ψ ′

D] Ψ ′
T 〉, the mapping

is a triple (7→N , 7→D , 7→T), such that 7→N : N ↪→ N ′, 7→D: ΨD ↪→ Ψ ′
D, and

7→T : ΨT ↪→ Ψ ′
T are partial functions.

The heuristic to construct such a mapping works as follows. We start with
partial functions 7→N , 7→D, and 7→T that have an empty domain. Then, for each
nodeN in N we determine the “most similar node” in N ′ that is not in the image
of 7→N . If there is such a node N ′, we extend 7→N by setting 7→N (N) := N ′;
otherwise N has no similar theory in N ′. Finally, for each link in ΨD (resp. ΨT)
we determine the “most similar link” in Ψ ′

D (resp. Ψ ′
T), and extend 7→D (resp.

7→T) accordingly, if such a link exists.
The whole heuristic is based on the notion of similarities of two nodes and

links. These two notions are defined by mutually recursion and make use of
already established mappings between old and new theory nodes and links.
The similarity of nodes and links is some value from [0..1] and is denoted by
Similarity(N,N ′) for nodes and Similarity(l, l′) for links. The values are esti-
mated as follows:

– Similarity of nodes. Let N ∈ N and N ′ ∈ N ′ be two nodes and (7→N , 7→D

, 7→T) the actual mapping.
• If 7→N (N) = N ′, then Similarity(N,N ′) := 1.
• If both N and N ′ have a defined name, like for example if they are both

the top-level theory nodes obtained for some named Casl-specification,
then if those names are equal, then Similarity(N,N ′) := 1, otherwise
Similarity(N,N ′) := 0.

• If none of them has a defined name, then we take the average of on the
one hand the similarity between the local sorts in ΣN

l and ΣN ′

l , and
on the other hand the similarity between the sets of incoming definition
links into N and those for N ′.

• Otherwise, Similarity(N,N ′) := 0.
– Similarity of links. We illustrate the computation for definition links, i.e.

links from ΨD and Ψ ′
D. The computation is analogously for theorem links.

Let l ∈ ΨD and l′ ∈ Ψ ′
D be two definition links and (7→N , 7→D, 7→T) the

actual mapping.

www.manaraa.com

Formal Software Development in MAYA 15

• If one is a global link while the other is not, then Similarity(l, l′) := 0.
• Otherwise, if they have the same morphism, then we set the similarities

of the two links to be the average of the similarity between the source
nodes and the similarity of the target nodes.

• If they don’t have the same morphism, then the similarity is 0.

6 Maintaining Proof Work

The development graph represents a justification-based truth maintenance sys-
tem for structured specifications. Based on underlying theorem provers it pro-
vides justifications for proof obligations (encoded as theorem links) and is able
to remember and adjust derivations which were computed previously. There are
two different types of justifications corresponding to the verification in-the-large
and to the verification in-the-small which both have to be updated each time the
graph is changed. In the following we describe this propagation of proof work
for the verification in-the-large and the verification in-the-small separately.

6.1 The DG-calculus

The theory of a node N depends on theories of all nodes connected to N via
(global) definition links. Local definition links hide the theories of underlying
subnodes. The next definition specifies possible paths to include the theory or
the local axioms of the source node to the theory of the target node.

Definition 3. Let Ψ be a set of links.

– Ψ contains a global path N1 Ψ
σ Nk from N1 to Nk via a morphism σ if

there is either a sequence of links N1
σ1 N2, N2

σ1 N3 . . . Nk−1,
σk−1

Nk in Ψ

with σ = σ1 ◦ . . . ◦ σk−1 or N1 = Nk and σ is the identity function.
– Ψ contains a local path N1 Ψ

σ Nk from N1 to Nk via a morphism σ

if there is a sequence of links N1
σ1 N2, N2

σ1 N3 . . .Nk−1,
σk−1

Nk in Ψ with
σ = σ1 ◦ . . . ◦ σk−1.

Given a development graph 〈N , ΨD] ΨT 〉, the definition links ΨD are used
to specify the semantics, i.e. theory, of the individual nodes. ΨT constitutes the
proof obligations inside the graph. In the following we define when a development
graph satisfies these proof obligations:

Definition 4. Let S = 〈N , Ψ〉 be a development graph and ∆ ⊆ Ψ be acyclic. ∆
satisfies a link M σ N ∈ Ψ (or M σ N ∈ Ψ resp.) iff σ(Th∆(M)) ⊆ Th∆(N)
(or σ(ΦMl) ⊆ Th∆(N) resp.). ∆ satisfies a set Γ of links if it satisfies all
elements in Γ .

A development graph S = 〈N , ΨD] ΨT 〉 is verified iff ΨD satisfies ΨT .

A global definition link includes the theory of the source node into the theory
of the target node while a local definition link includes only the local axioms of
the source node. Due to the `-translation property of the underlying entailment

www.manaraa.com

16 Serge Autexier and Dieter Hutter

relation, any global definition link starting at the target node of such a link will
export this imported theory or axioms in turn to other theories. Theorem links
which are satisfied by the definition links can be treated in the same manner as
definition links:

Lemma 1. Let S = 〈N , ΨD] ΨT 〉 be a development graph and let ΨD satisfy a
set of links ∆. Then the following holds:

1. N ΨD]∆
σ M implies σ(Th(N)) ⊂ Th(M) and

2. N ΨD]∆
σ M implies σ(ΦNl) ⊂ Th(M)

Proof. We sketch the proof for global paths which is done by induction on the
length of the path:

Base case: If the path is empty, then σ is the identity and N = M . Thus
σ(Th(N)) ⊂ Th(M) holds trivially.
Step case: As an induction hypothesis we assume that if N ΨD]∆

σ′

K then
σ′(Th(N)) ⊂ Th(K). LetK σ′′

M ∈ ΨD]∆. Thus, σ′′(Th(K)) ⊂ Th(M) (Def. 2
or Def. 4 resp.) and therefore σ′′(σ′(Th(N))) ⊂ Th(M). ut

In order to verify a development graph we introduce a calculus DG operating
on links to perform a so-called verification in-the-large and providing a local
decomposition rule to establish elementary relations between theories by usual
theorem proving, which we call verification in-the-small.

Definition 5 (Calculus DG). The calculus DG is a sequent-style calculus. Se-
quents are of the form Γ ` ∆, where Γ,∆ are sets of links. A sequent Γ ` ∆

holds iff Γ satisfies ∆. The sequent calculus rules of DG are:

Axiom (AX):
Γ ` ∅

Global decomposition (GD):

Γ ` N σ M,
⋃

K
ρ
N∈Γ

{K
σ◦ρ

M},
⋃

K
ρ
N∈Γ

{Kσ◦ρ
M}, ∆

Γ ` N σ M,∆

Local decomposition (LD):

Γ ` ∆

Γ ` N σ M,∆
if for all φ ∈ ΦNl : σ(φ) ∈ ThΓ (M)

Global subsumption (GS): Local subsumption (LS):
Γ ` ∆

Γ ` N σ M,∆
if N Γ∪∆

σ M
Γ ` ∆

Γ ` N σ M,∆
if N Γ∪∆

σ M

Theorem 1. Let S = 〈N , ΨD]ΨT 〉 be a development graph and ∆ ⊆ ΨT . Then,
ΨD ` ∆ is derivable in the deduction system DG iff ΨD satisfies ∆.

Proof (of Theorem 1).

www.manaraa.com

Formal Software Development in MAYA 17

Soundness: We induce on the length n of the deduction:

Base case: let n = 1. Thus, ∆ = ∅ and S satisfies ∆ trivially.

Step case: let n > 1 and ΨD ` ∆′ be the immediate predecessor of ΨD ` ∆. As
induction hypothesis we assume that S satisfies ∆′. We do a case split according
to the applicable rules:

GD: Hence N σ M ∈ ∆′, K
σ◦ρ

M ∈ ∆′ for all K
ρ
N ∈ ΨD and K

σ◦ρ
M ∈ ∆′

for all K
ρ
N ∈ ΨD. Since S satisfies ∆′, we know that σ(ΦNl) ⊆ Th(M),

σ(ρ(Th(K))) ⊆ Th(M) for all K
ρ
N ∈ ΨD and σ(ρ(ΦKl)) ⊆ Th(M) for

all K
ρ
N ∈ ΨD . Thus, from the `-translation property of the underlying

entailment relation we get
[

σ(ΦNl) ∪
⋃

K
ρ
N∈ΨD

σ(ρ(Th(K))) ∪
⋃

K
ρ
N∈ΨD

σ(ρ(ΦKl))
]`
ΣN ⊆ Th(M).

Hence, σ(
[

ΦNl ∪
⋃

K
ρ
N∈ΨD

ρ(Th(K)) ∪
⋃

K
ρ
N∈ΨD

ρ(ΦKl)
]`
ΣM) ⊆ Th(M)

holds due to the `-translation property, i.e. σ(Th(N)) ⊆ Th(M) and thus
ΨD satisfies N σ M .

LD: σ(φ) ∈ Th(M) for all φ ∈ ΦNl implies that ΨD satisfies N σ M and thus S
satisfies ∆.

GS: Since N ΨD∪∆′

σ M holds and S satisfies ∆′ we know that σ(Th(N)) ⊂
Th(M) holds, i.e. S satisfies N σ M .

LS: Since N Ψ∪∆′

σ M and S satisfies ∆′ we know that σ(ΦNl) ⊂ Th(M)
holds, i.e. S satisfies N σ M .

Completeness: Suppose, ΨD satisfies ∆. Since the development graph S =
〈N , ΨD]ΨT 〉 is acyclic with respect to ΨD we define the depth of a node N ∈ N
as the length of the longest path of links in ΨD from some leaf node in N to N .
We induce on the multiset depths(∆) of depths of the source nodes in ∆.

Base case: If depths(∆) = ∅ then ∆ = ∅ and ΨD ` ∅ holds by rule AX.

Induction step: Let depths(∆) 6= ∅. As an induction hypothesis suppose the
conjecture holds for all ∆′ which are smaller than ∆ with respect to the multiset-
ordering on depths.

– Let N σ M ∈ ∆ with depth(N) = max(depths(∆)). Since ΨD satisfies ∆−
{N σ M}, applying the induction hypothesis yields Ψ ` ∆− {N σ M}. As
ΨD satisfies N σ M , we know that σ(ΦNl) ⊂ Th(M) holds and apply rule
LD to deduce finally ΨD ` ∆.

– Let N σ M ∈ ∆ with depth(N) = max(depths(∆)). For all links K
ρ
N ∈

ΨD σ(ρ(Th(K))) ⊂ Th(M) holds. Analogously for all links K
ρ
N ∈ ΨD

holds σ(ρ(ΦKl)) ⊂ Th(M). Thus, S satisfies both
⋃

K
ρ
N∈ΨD

{K
σ◦ρ

M} and
⋃

K
ρ
N∈ΨD

{Kσ◦ρ
M}. Applying the induction hypothesis yields ΨD ` (∆−

{N σ M})∪
⋃

K
ρ
N∈ΨD

{K
σ◦ρ

M}∪
⋃

K
ρ
N∈ΨD

{Kσ◦ρ
M}. Since S satisfies

also N σ M we use the argumentation of the first case to deduce ΨD `
(∆−{N σ M})∪{N σ M}∪

⋃

K
ρ
N∈ΨD

{K
σ◦ρ

M}∪
⋃

K
ρ
N∈ΨD

{Kσ◦ρ
M}

and apply rule GD to derive ΨD ` ∆. ut

www.manaraa.com

18 Serge Autexier and Dieter Hutter

The DG-calculus is based on an oracle to check if σ(φ) ∈ ThΨD (M) holds. In
general ThΨD (M) is an infinite set of formulas and we need a finite axiomatiza-
tion for it. It is well-known that structured specifications excluding hiding3 are
flatable. The following lemma describes the finite axiomatization of the theory
of a node:

Lemma 2. Let S = 〈N , Ψ〉 be a development graph and let the axiomatization
of some node N ∈ N relative to some ∆ ⊆ Ψ , ∆ acyclic, be defined by

ΦN∆ = ΦNl ∪
⋃

K
σ
N∈∆

σ(ΦK∆) ∪
⋃

K
σ
N∈∆

σ(ΦKl)

Then, Th∆(N) =
[

ΦN∆
]`
ΣN holds for all N ∈ N .

Proof. Directly from Def. 2 and the `-translation property of the underlying
entailment relation. ut

To verify the proof obligations on local theorem links, which we call verifica-
tion in-the-small, we make use of standard theorem provers like Isabelle [17]
or Inka 5.0 [1]. The reader is referred to [3] for a description how development
graph and theorem provers are technically connected.

6.2 Verification In-the-Large

Verification in-the-large is concerned with the reduction of the overall problem
of verifying an development graph S to the problem of proving as few as pos-
sible proof obligations denoted by local theorem links. Verification-in-the-large
is done with the help of the DG-calculus. Obviously, applying global and local
subsumption rules as often as possible will reduce the number of arising proof
obligations in-the-small. To support the maintenance of the proofs in-the-large,
MAYA provides explicit proof objects for the DG-calculus. Theorem links are
annotated with explicit proof objects, which are instances of the DG-calculus
rules. Each DG-calculus rule reduces the proof of a theorem link to the problem
of proving a set of other theorem links. Thus, the proof object of a theorem link
is distributed through the development graph and only the first inference step,
the so-called local proof object, is stored at the theorem link while the remaining
part always coincides with proof objects of other theorem links.

Definition 6. Let ψ = N σ M then

– prψ := GD(ψ0, 〈ψ′
1, . . . , ψ

′
n〉, 〈ψ

′′
1 , . . . , ψ

′′
m〉) is a local proof object.

prψ is locally valid iff ψ0 = N σ M , {ψ′
1, . . . , ψ

′
n} =

⋃

K
ρ
N∈Γ

{K
σ◦ρ

M} and

{ψ′′
1 , . . . , ψ

′′
m} =

⋃

K
ρ
N∈Γ

{ψσ◦ρM}

3 See [14] for an extension of development graphs by hiding which translates proof
obligations in theories based on hiding to proof obligations in theories without hiding.

www.manaraa.com

Formal Software Development in MAYA 19

– prψ := GS(ψ1, . . . , ψn) is a local proof object. prψ is locally valid iff ψ1, . . . , ψn
constitutes a relation N σ M .

Let ψ = N σ M then

– prψ := LS(ψ1, . . . , ψn) is a local proof object. prψ is locally valid iff ψ1, . . . , ψn
constitutes a relation N σ M .

– prψ := LD(σ, (Ax1, Φ1), . . . , (Axk , Φk)) is a proof object where each Φi is ei-
ther an atom NoProof, ProofExists or a set of triples (τ,K,Ω) with Ω ⊂ ΦKl .
prψ is locally valid iff for all (Axi, Φi) with 1 ≤ i ≤ n, (

⋃

(τ,K,Ω)∈Φi
τ(Ω)) `

σ(Axi) and for all triple (τ,K,Ω) ∈ Φi K
τ M holds.

Ψ(prψ) is defined as the set of all links occurring in the proof object prψ of ψ.
Ψ∗(prψ) denotes the transitive closure of Ψ(prψ) and is defined by Ψ∗(prψ) =
Ψ(prψ) ∪

⋃

ψ′∈Ψ(prψ) Ψ
∗(prψ′).

Lemma 3. Let S = 〈N , ΨD] ΨT 〉 be a development graph. If there are locally
valid proof objects prψ with ψ 6∈ Ψ∗(prψ) for all ψ ∈ ΨT then ΨD satisfies ΨT .

Proof. Since ψ 6∈ Ψ∗(prψ) holds for all ψ ∈ ΨT there is a partial ordering < on
ΨT with ψ′ < ψ iff ψ′ ∈ Ψ∗(prψ). We can extend such a partial ordering to a
total ordering � on ΦT . It is an easy inductive argument that we can construct
a DG-calculus proof in the following way: we start with the problem of proving
ΨD ` ΨT and apply the proof rule attached to the maximal element of ΨT wrt. �.
Since the proof object is locally valid the rule is applicable and we have reduced
the problem to a problem of proving ΨD ` ΨT \ {ψ}. Iterating this approach by
choosing always the maximal element of the set of remaining theorem links we
end up in the trivial case of proving ΨD ` ∅.

Verification in-the-large is concerned with the problem of creating and main-
taining local proof objects of the types GD, GS and LS such that each of these
local proof objects is locally valid and such that the proof object of a link ψ

does not depend on itself, i.e. ψ 6∈ Ψ∗(prψ). The problem of maintaining LD-
proof objects is discussed in section 6.3. We call a development graph verified
in-the-large if and only if all GD, GS, LS-proof objects are locally valid and do
not contain cycles (i.e. ψ 6∈ Ψ∗(prψ)).

Starting with an empty development, which is trivially verified, the graph is
manipulated by using basic operations like for instance the insertion, deletion,
or change of links or axioms. After a sequence of basic operations (updating the
development graph according to the change of specification made by the user)
the proof objects are adapted to the needs of the actual graph. Hence, each
subsequent development graph is verified reusing the old proof objects annotated
in the former development graph.

To describe the update-process, assume now that we manipulated a verified
development graph with the help of a sequence of basic operations. To establish
the validity of the resulting development graph we perform the following steps:

www.manaraa.com

20 Serge Autexier and Dieter Hutter

Checking GD-proof objects: In the first phase, existing GD-proof objects are up-
dated to be locally valid proof objects. Starting at the top-level theories (like List

in our example), we traverse the graph according to the depth of the theories.
Reasons for an invalidated GD-proof object prψ = GD(ψ0, 〈ψ′

1, . . . , ψ
′
n〉, 〈ψ

′′
1 , . . . , ψ

′′
m〉)

are the change of the morphism of some link or the insertion or deletion of def-
inition links targeting at the source of the theorem link. In the first case we
replace an inappropriate link by a link with an appropriate morphism. Either
such a link already exists (e.g. as a definition link) or it is created and added
to ΨT while it inherits the (invalid) proof object of the replaced link (this proof
object will be fixed in the ongoing procedure). In case of insertion or removal of
definition links, both link lists 〈ψ′

1, . . . , ψ
′
n〉 and 〈ψ′′

1 , . . . , ψ
′′
m〉 in prψ are updated

accordingly. This, again, might result in the creation of new theorem links, which
are again added to ΨT , or the deletion of theorem links from ΨT if they have
been once created using the GD-rule and are of no use anymore (i.e. they do not
occur in any proof object anymore).

Checking GS- and LS-proof objects: In the second phase, proof objects concerned
with subsumption rules are checked for validity. For each of these proof objects
prψ = GS(ψ1, . . . , ψn) we prove whether all links ψi do still exist and whether the
morphism of the denoted path still coincides with the morphism of the theorem
link ψ. If any of these conditions fails then the proof object is removed; otherwise
the proof object prψ is still locally valid.

Establish new proof object: In the third phase local proof objects are generated
for theorem links which do not possess any proof object. Either these links have
been newly created or their proof objects have been removed in an earlier stage
of the procedure. Given a theorem link ψ, firstly we search for an application
of the GS- or LS-rule. Thus, we search for a path starting at the source of ψ
and ending at the target of ψ which coincides with ψ also in its morphism. In
order to obtain an acyclic proof object, each link ψ′ in the path has to satisfy
the property ψ 6∈ Ψ∗(prψ′). In practice we restrict this search for a path inside
a graph in the following way: First, we do not search for paths in which a
node is visited twice (although in general, running through a circle may result
in a different overall morphism of the path). Second, proving a theorem link
K
σ◦ρ

M which was created while verifying a theorem link N σ M in presence of
a definition link K

ρ
N , we do not consider paths starting with this definition

link. If we would find such a path then we could strip off the definition link to
obtain a path for N σ M (but this was already checked during the verification
of this link!). If we cannot find a suitable path to establish a GS- or LS-proof
object, a GD-proof object for ψ is generated. This may cause the generation of
new theorem links to be added to ΨT if no suitable links are already available in
the graph.

To illustrate our approach, consider our example in Fig. 3. As we have started
with the empty development graph there are no GD, GS or LS-proof objects to
be updated and we continue with phase three:

www.manaraa.com

Formal Software Development in MAYA 21

Descending the graph according to the depth of the theories, we first es-
tablish a new proof object for the global theorem link from List to NatList.
The GS-rule is not applicable since there is no corresponding global path from
List to NatList. Hence, the GD-rule is applied which results in a proof ob-
ject GD(ψ0, 〈ψelem〉, 〈〉). ψ0 is the local definition link from List to NatList

while ψelem is a newly generated theorem link from Elem to NatList (corre-
sponding to the import of Elem in List). Similarly, we obtain a local proof
object GD(ψ′

0, 〈ψ
′
nat〉, 〈ψ

′
stack〉) for the global theorem link ψ′ from NatStack

to NatList. ψ′
0 is a newly generated local theorem link parallel to ψ′, ψ′

nat is the
global definition link from Nat to NatList. ψ′

stack is a newly generated local
theorem link from Stack to NatList. Using the LS-rule ψ′

stack is proven by the
path of (global) theorem links from Stack over List to NatList. Since Nat-

Stack has no local axioms, ψ′
nat is trivially proven using the LD-rule. Applying

the GD-rule to the global theorem link from Stack to NatStack introduces a
global theorem link from Elem to NatStack which is proven using the GS-rule
by the path of global links from Elem over Nat to NatStack. At the end we
are left with open proofs for the local theorem links from Stack to List and
from Elem to Nat which are tackled by the verification in-the-small.

<nat> , <0, succ>

NAT

NATLISTLISTSTACK NATSTACK

<list> , <nil, cons> <Nlist> , <Nnil, Ncons><stack> , <empty, ...> <Nstack> , <Nempty, ...>

idid id id

<elem> , <>

ELEM

list −> Nlist,...

Nstack −> Nlist,...stack −> list,...

elem −> nat

stack −> Nstack,...

Fig. 3. Management of change for NatList

Suppose now, we change the graph structure by the insertion of a new the-
ory Rel introducing a new symbol R and imported by Elem. Therefore all
morphisms of the links from Elem, List and Stack to Nat, NatList and
NatStack will be changed in order to incorporate an appropriate mapping of
R. In the first phase of the revision process the GD-proof objects of the corre-
sponding global theorem links are adjusted to incorporate the mapping of R.
Additionally, the proof object of the global theorem link from Elem to Nat is
changed to GD(ψ′

0, 〈ψREL〉, 〈〉) where ψREL denotes a global theorem link from
Rel to Nat (corresponding to the new definition link from Rel to Elem). In
the second phase nothing has to be done since all GS- and LS-proof objects
are still valid although the mapping have changed. In the third phase the new
theorem link ψREL is proven with the help of the GD-rule which introduces a
local theorem link from Rel to Nat denoting the proof obligations arising from
the local axioms in Rel to be proven in Nat.

www.manaraa.com

22 Serge Autexier and Dieter Hutter

6.3 Verification In-the-Small

Applying the local decomposition (LD-)rule gives rise to proof obligations that
each local axiom of the source node mapped by the attached morphism of the
link is a theorem of the target theory. To tackle these proof obligations, the
system has to compute the axiomatization of the theory (ref. lemma 2) and to
apply the morphism of the theorem link to the axioms of the source theory.
Since the computation of the axiomatization is expensive the system caches the
computed axiomatization of the target node. The axiomatization is annotated by
the information about the origin, applied morphisms and used paths of mapped
axioms. Once the axiomatization of a different node is needed to tackle another
proof obligation, the path information attached to the cached axiomatization is
used to incrementally compute the axiomatization of the new node by comparing
the needs with the annotated information. Thus, we obtain a set of axioms to
be removed from the cached axiomatization and a set of axioms to be inserted
to the cached axiomatization to obtain the axiomatization of the new node.

Suppose ψ = N σ M is a local theorem link with an attached local proof
object LD(σ, (Ax1, Φ1), . . . , (Axk , Φk)). Each axiom Axi of N is related to the
proof description Φi. Φi is either an atom NoProof indicating that this proof
obligation has not been proven yet, or an atom ProofExists indicating that
some theorem prover has proven the problem but did not return an explicit proof
object or at least the set of used axiom, or the set of axioms used to prove σ(Axi)
inside the theory of M . In this case Φi breaks down the used axioms according
to their origins and the morphism with the help of which they are imported to
the target theory.

Changing either the axioms of N , the morphism σ or the subgraph of M may
render the proof object prψ invalid. In the following we discuss the repair of the
proof object prψ for these three cases:

Change in N : The change of source axioms results in corresponding changes
of the proof obligations. Insertion of a new axiom Axk+1 will result in a new
entry (Axk+1,NoProof), where NoProof indicates that σ(Axk+1) is still to be
proven by some theorem prover. Deletion of some Axi will result in the removal
of the corresponding pair (Axi, Φi). Change of a source axiom Axi to Ax′i causes
an invalidation of Φi. If the system provides explicit proof objects (instead of
the set of used axioms) the system supports the theorem prover by additionally
providing Axi and the old proof for σ(Axi) when proving σ(Ax′i) to allow for a
reuse of the old proof.

Change in morphism σ: Changing the morphism σ attached to the theorem
link to σ′ may result in a change of some proof obligations depending how the
change of the morphism affects the mapping of local axioms of the source theory.
If σ(Axi) = σ′(Axi) we can reuse the old proof otherwise the proof information
is invalidated but stored for a later reuse when tackling the proof obligation
σ′(Axi) by some theorem prover.

www.manaraa.com

Formal Software Development in MAYA 23

Change in M : Since the theory of M depends on its subgraph, every change
in this subgraph may affect the theory of M . We distinguish two different ap-
proaches depending whether Φi is ProofExists or description of used axioms.

1. In the latter case we know about all used axioms (and their origins). The
proof is still valid if all used axioms are still part of the theory of M . Instead
of computing the changes in the axiomatization of M we check for all triples
(τ,K,Ω) whether τ(Ω) is still imported to M from K via a morphism τ ′

with τ ′(Ω) = τ(Ω).
2. If there is no explicit proof object, we assume that all axioms accessible at

the time of the proof have been used for the proof. Thus a proof is invalid
if some axiom of a node inside the subgraph of M has been changed or
deleted, or some definition link has been changed or deleted and there is no
alternative path with the same morphism. This check is restricted to objects
which have existed at the time when the proof was done. Hence each object
(links, nodes, axioms, etc.) contains timestamps of its creation, its deletion,
or its change. For example, changing a morphism does not affect the validity
of a proof if all signature entries which are affected by these changes were
introduced after the computation of the proof.

Consider our running example and suppose we had already proven some
axioms of Stack mapped as theorems to List when we inserted the theory
Rel. As Rel only adds new axioms to the theory of List, all proofs of the
axioms are still valid. This holds although the morphism τ of the local theorem
link from Stack to List has changed to τ ′ in order to incorporate the mapping
of the new relation R. In case the local proof object provides the list of used
axioms we can easily check that τ(Axi) = τ ′(Axi) holds for all 1 ≤ i ≤ n.
Otherwise, the morphisms τ and τ ′ are compared which results in the fact that
the only differences between both morphisms concern the mapping of the relation
R which has been introduced after doing the proofs of any Axi. Thus, changing
τ to τ ′ will not affect the proofs of any Axi done before the insertion of the
theory Rel.

7 Implementation

The development graph as well as the techniques for their maintenance are imple-
mented in the Maya system (cf. [9]). Currently the fixed logic underlying the de-
velopment graph is higher-order logic. The uniform representation of structured
theories in the development graph supports evolutionary formal software devel-
opment with respect to arbitrary specification languages, provided there exists
an adequate mapping from the specification language into development graphs.
Currently Maya integrates parsers for the specification languages Casl (cf. [1])
and VSE-SL (cf. [7]). With respect to the verification in-the-small, Maya sup-
ports the use of arbitrary theorem provers for higher-order logic. To this end a
generic interface to propagate the changes of theories to the theorem provers has
been implemented. Currently, the HOL-Casl instance of Isabelle/HOL (cf. [3])

www.manaraa.com

24 Serge Autexier and Dieter Hutter

and the InKa 5.0 theorem prover (cf. [1]) are integrated into Maya via this
interface. The Lisp sources of Maya can be obtained from the Maya-webpage
[9].

8 Related Work

The KIV system [18] incorporates a development graph similar to the one pre-
sented in this paper. However, instead of having basic structuring mechanism like
our global and local links, the KIV structure mechanisms are heavy tailored to
the structuring constructs of their specification languages. Although this allows
for a more adequate representation of global proof obligations, it lacks the abil-
ity to easily integrate support for further specification languages. With respect
to the verification in-the-large, it also supports the maintenance of established
proof obligations when changing the specification, but lacks a mechanism for
redundancy checking and elimination. This is due to the absence of decompo-
sition of proof obligations between graphs into proof obligations between the
respective subgraphs. With respect to the verification in-the-small, when the
specification is changed, the effects on the axioms usable by the theorem prover
cannot be determined in an as granular manner as in the Maya system. Finally,
the tight integration of the KIV development graph with the built-in theorem
prover hampers the use of further theorem provers.

The SpecWare system [10] is a formal software design environment. It fol-
lows the paradigm of top-down formal software development using refinement,
modularization, and parameterization. The whole design and refinement pro-
cess is explicitly represented in some kind of development graph and the arising
proof obligations are proven using theorem provers. However, like for the KIV
system, the basic structuring mechanisms are tailored to the specification lan-
guage, which hampers the use of other specification languages. Finally, it lacks
the support for redundancy checking and elimination, as well as the maintenance
of established proof obligations.

The Little Theories approach [8] provides a subset of the theory structuring
mechanism of development graphs, i.e. global definition links and proven global
theorem links. It is more general than development graph, because each theory
(node) can have its own logic, whereas for the current implementation of de-
velopment graphs presented in this paper, the whole graph is with respect to a
single logic. The extension of development graphs to deal with different logics
has been achieved in theory in [14]. However, little theories lack on the one
hand the ability to represent intermediate states of the development, i.e. a state
where there still exist yet unproven postulated global theorem links. On the
other hand, there are no mechanisms that exploit the graph structure to reduce
the amount of proof obligations and to deal with non-monotonic changes of the
theories.

www.manaraa.com

Formal Software Development in MAYA 25

9 Conclusion

For the development of industrial-size software systems, the preservation of the
structure of specifications is essential not only for the specification of the systems,
but also for their verification. Indeed, the structure can be exploited in order to
reduce the amount of proof obligations and to support efficiently the revision of
specifications, which usually arises in practice.

We presented the implementation of a system for verification in-the-large
about structured specifications. It enables to formally find and eliminate redun-
dant proof obligations. Furthermore, it incorporates strategies to transform a
proof for some former specification to some new specification, while preserving
as many established conjectures as possible.

The theorem proving mechanisms for verification in-the-large are the kernel
of the Maya system [9]. Around that kernel are build on the one hand a uniform
interface for parsers of arbitrary specification languages4, and on the other hand
a uniform interface to use theorem provers for verification in-the-small. These
functionalities enable Maya to bridge the gap between parsers for specification
languages and state of the art automated or interactive theorem provers, and
deals with all aspects of evolutionary formal software development based on
structured specifications.

Future work will consist of extending the verification in-the-large mechanisms
to support development graphs with hiding [14] as well as heterogenous devel-
opment graphs [13]. Further work will also be concerned with the generation of
proof-objects for completed developments from Maya’s internal “in-the-large”
proof representation and the annotated “in-the-small” proofs. This proof object
shall be used to proof check a completed development, which formally certifies
a completed formal software development.

References

1. S. Autexier, D. Hutter, H. Mantel, A. Schairer. System description: InKa 5.0 - a
logic voyager. In H. Ganzinger (Ed.): 16th International Conference on Automated
Deduction, Springer, LNAI 1632, 1999.

2. S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards an evolutionary for-
mal software-development using CASL. In C. Choppy and D. Bert, editors, Pro-
ceedings Workshop on Algebraic Development Techniques, WADT-99. Springer,
LNCS 1827, 2000.

3. S. Autexier, T. Mossakowski. Integrating HOL-Casl into the Development Graph
Manager Maya. In A. Armando (Ed.) Frontiers of Combining Systems (Fro-
CoS’02), Santa Margherita Ligure, Italy, Springer LNAI, April, 2002.

4. CoFI Language Design Task Group. The common algebraic specification language
(Casl) – summary, 1998. Version 1.0 and additional Note S-9 on Semantics,
available from http://www.brics.dk/Projects/CoFI.

4 Provided there is an adequate translation of the logic and the structuring constructs
of the specification language into the development graph structure.

www.manaraa.com

26 Serge Autexier and Dieter Hutter

5. M. Cerioli, J. Meseguer. May I borrow your logic? Theoretical Computer Science,
173(2):311-347, 1997.

6. D. Hutter. Management of change in verification systems. In Proceedings 15th
IEEE International Conference on Automated Software Engineering, ASE-2000,
pages 23–34. IEEE Computer Society, 2000.

7. D. Hutter et al.: Verification Support Environment (VSE), Journal of High In-
tegrity Systems, Vol. 1, 1996.

8. W. M. Farmer. An infrastructure for intertheory reasoning, In: D. McAllester,
ed., Automated Deduction – CADE-17, LNCS, 1831:115-131, 2000.

9. Maya-webpage: http://www.dfki.de/˜inka/maya.html.
10. J. McDonald, J. Anton. SPECWARE - Producing Software Correct by Construc-

tion. Kestrel Institute Technical Report KES.U.01.3., March 2001.
11. J. Meseguer. General logics, In Logic Colloquium 87, pages 275–329, North Hol-

land, 1989.
12. T. Mossakowski: CASL: From Semantics to Tools. In S. Graf (Ed.) TACAS 2000,

LNCS volume 1785, pages 93-108. Springer, 2000.
13. T. Mossakowski. Heterogeneous development graphs and heterogeneous borrow-

ing. In M. Nielsen (Ed.) Proceedings of Foundations of Software Science and
Computation Structures (FOSSACS02), Grenoble, France, Springer LNCS, 2002.

14. T. Mossakowski, S. Autexier, and D. Hutter: Extending Development Graphs
With Hiding. In H. Hußmann (Ed.), Proceedings of Fundamental Approaches to
Software Engineering (FASE 2001), Italy. LNCS 2029, 269–283. Springer, 2001.

15. S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The development
graph manager MAYA. In Proceedings 9th International Conference on Algebraic
Methodology And Software Technology, AMAST2002. Springer-Verlag, 2002.

16. D. Hutter and A. Schairer. Proof transformations for evolutionary formal software
development. In Proceedings 9th International Conference on Algebraic Method-
ology And Software Technology, AMAST2002. Springer-Verlag, 2002.

17. L. C. Paulson. Isabelle - A Generic Theorem Prover. LNCS 828. Springer, 1994.
18. W. Reif: The KIV-approach to Software Verification, In KORSO: Methods, Lan-

guages, and Tools for the Construction of Correct Software - Final Report, LNCS
1009, 339-368. Springer, 1995.

